激光敌我识别系统中滤光膜的研制

杨永亮 刘国军 付秀华 李美萱

(长春理工大学光电工程学院,吉林长春 130022)

摘要 根据激光敌我识别系统的使用要求,选择 H4 和 SiO₂ 作为高低折射率材料,借助 Macleod 和 TFCalc 软件进 行膜系优化设计和分析。采用电子束真空镀膜的方法并加以离子辅助沉积技术,通过正交矩阵实验对材料的工艺 参数进行调整和优化,利用基片的正反面分别对带通滤光片的长波反射带和短波反射带进行展宽,解决了单面膜 层过厚难以控制的问题,制备了符合要求的激光滤光膜。镀膜后的基片在 532,632,905,1064 和 1550 nm 波长处 的透射率小于 0.2%,808 nm 波长附近的平均透射率大于 95%。并在 532 nm 和 1064 nm 波长处具有较高的激光 损伤阈值,能承受恶劣的环境测试,满足激光敌我识别系统中光学仪器的使用要求。

关键词 薄膜;滤光膜;激光损伤阈值;离子辅助沉积;敌我识别体统

中图分类号 O484.4 文献标识码 A doi: 10.3788/AOS201232.0131002

Study and Fabrication of Filter Film in Laser Identification Between Friend or Foe System

Yang Yongliang Liu Guojun Fu Xiuhua Li Meixuan

 $(School \ of \ Photo-Electronic \ Engineering \ , \ Changchun \ University \ of \ Science \ and \ Technology \ ,$

Changchun, Jilin 130022, China)

Abstract According to the requirement of laser identification between friend or foe system, chosing H4 as the material of high refractive index and SiO₂ as the material of low refractive index, the film system is designed and optimized with the help of Macleod and TFCalc software. Adopting electron beam vaccum deposition method with the aid of ion assistant deposition technology as well as using orthogonal matrix tests to adjust and optimize technological parameters of the materials, using two sides of the substrate to broaden the long and short wavelenth reflection bands respectively, the monitoring problem of thicker stack on one side has been solved and filter film to meet the demand has been deposited. The reflectances at 532, 632, 905, 1064 and 1550 nm wavelengths are less than 0.2%, and it makes the transmittance over 95% at 808 nm wavelength. The laser induced damage thresholds (LIDTs) of the filter at 532 nm and 1064 nm are higher. Moreover, the filter can endure the test of bad environment, meeting the using requrement of the identification between friend or foe system.

Key words thin films; filter film; laser induced damage threshold; ion assistant deposition; identification between friend or foe system

OCIS codes 310.1860; 120.2440; 140.3360; 330.4875

1 引

言

在现代战争中,常常因为错误的敌我识别而造 成自相残杀。为了进一步提高敌我识别的准确度, 要求激光敌我识别系统对某一特定波长的激光高透 射,而对其余波长的激光和杂散光进行抑制。同时 激光敌我识别系统又易受到激光致盲武器的威 胁^[1],这就使得高性能滤光膜的研制成为必要。国 内外对各种滤光膜^[2~5]进行了多方面的研究,但对 特定波长激光高透射,同时有宽的反射带且具备较 高的激光损伤阈值的滤光膜的研究还未见报道。

针对敌我识别系统对薄膜的特殊要求,选择 H4和SiO₂作为高低折射率材料,借助Macleod和

基金项目:国家重点实验室基金(9140c3104030902)资助课题。

作者简介:杨永亮(1984—),男,博士研究生,主要从事光学薄膜方面的研究。E-mail: singleyangyongliang@126.com 导师简介:刘国军(1964—),男,博士,教授,主要从事高功率半导体激光器方面的研究。E-mail: gjliu626@126.com (通信联系人)

收稿日期: 2011-06-08; 收到修改稿日期: 2011-07-25

TFCalc软件进行膜系优化设计,并使用 Macleod软件进行工艺反馈分析,进一步优化了工艺参数,利用基片的正反面分别对带通滤光片的长波反射带和短波反射带进行展宽的方法,重点解决了单面膜层过厚难以控制的问题,并给出了相应的测试结果。

2 技术要求

根据敌我识别系统中滤光片的光谱选择和激光 防护的要求,具体的膜系设计光谱参数如表1所示。

表 1	膜系设计参数	
11 1	灰小风竹乡风	

Table 1 Design specification of the coating

Wavelength /nm	Transmission / %
$500 \sim 760$	<1(average)
532 ± 5	<0.2
632 ± 5	<0.2
808 ± 5	>95
840~1600	<1(average)
1064 ± 5	<0.2
1550 ± 5	<0.2

840~1600 nm 和 500~760 nm 高反射是为了 减少背景光的影响。808 nm 是友方用来相互识别 的激光波长。532,632,905,1064 和 1550 nm 高反 射是为了避免敌方激光信号的干扰,同时起到对 532 nm 和 1064 nm 激光防护的作用。一般激光致 盲武器都有较高的功率,所以要求膜层在 532 nm 和 1064 nm 应有较高的激光损伤阈值(LIDT)。与 以往的普通滤光膜^[6~8]相比,无论在材料的选择、膜 系设计还是薄膜制备方面都有很大的难度。

3 材料的选择

材料的选择主要考虑其透明区、吸收、薄层间的

匹配以及膜层与基底之间的匹配。对于激光薄膜, 还要考虑材料的激光损伤阈值。

在可见和近红外波段常用的高折射率材料有 ZrO₂,Ta₂O₅和H4等,H4主要成分是氧化钛和氧 化镧,并含有微量的钴、铬、铜、铁、钒,沉积温度约为 2200 ℃,其透明区为 0.36~7 μ m。与之匹配的低 折射率材料有 MgF₂和 SiO₂。

电子束加热蒸发的 ZrO₂ 的折射率明显低于 Ta₂O₅和 H4 的折射率,而且 ZrO₂ 薄膜放于空气中 会吸收水分^[9],从而使 ZrO₂ 多层膜的反射率和透 射率光谱产生变化,大大降低了膜层的光谱稳定性。 实验发现 Ta₂O₅ 的激光损伤阈值低于 H4^[10,11]。最 终选择 H4 作为高折射率材料。

 MgF_2 和 SiO₂均有较高的激光损伤阈值,但 MgF_2 在沉积的过程中容易产生喷点,而且 MgF_2 薄膜具有很高的张应力,当 MgF_2 单层膜的厚度超 过 2 μ m 时,会产生脱膜现象^[9]。故选择 SiO₂ 作为 低折射率材料。

4 工艺参数的确定及材料折射率的计算

对于光学薄膜而言,最重要的是材料的光学特性。通常膜层材料的光学常数是基底温度、沉积速 率和真空度等工艺参数的函数,即同一材料在不同 工艺条件下的光学常数也不同。因此,在膜系设计 之前,必须确定材料的光学常数。

4.1 沉积工艺的确定

利用正交矩阵实验来获得各工艺参数的变化对 折射率变化趋势的影响,从而获得最佳的工艺参数。 具体的矩阵形式如表 2 所示,相应的参数在表 3 中 给出。实验过程中保持离子源的参数不变。

÷	表 2	正交矩阵实验数	女据	
Table 2	Data	of orthogonal r	natrix	tests

Dun	Deposition rate	Substrate temperature	17	Refractive index of	Refractive index of
Kull	Deposition rate	Substrate temperature	vacuum	H4 (λ =550 nm)	$SiO_2(\lambda = 550 \text{ nm})$
1	—	_	+	2.174	1.456
2	+	—	_	2.197	1.458
3	_	+	—	2.206	1.461
4	+	+	+	2.241	1.468

表 3 正交矩阵的具体参数

Table 3 Specific parameters of orthogonal matrix

	Deposition rate of	Deposition rate of	Substrate temperature / °C	Vacuum /Pa
	H4 /(nm/s)	$SiO_2/(nm/s)$	•	
_	0.1	0.2	100	1×10^{-2}
+	0.5	0.8	300	3×10^{-3}

从表中发现,在一定范围内,随着基底温度和真 空度的升高及沉积速率的增大,H4和 SiO₂的折射 率都有升高的趋势,理论上来说,在一定的工艺参数 范围内,适当提高基底温度和真空度,增大沉积速 率,有利于获得高折射率的 H4和 SiO₂,反之亦然。

沉积 H4 的过程中发现,当 H4 的沉积速率为 0.5 nm/s时,膜层有吸收,查阅资料表明,这是由电 子枪功率过高时氧化物失氧造成的。因此选择减慢 沉积速率并向真空室内充入一定量的高纯 O₂,这样 得到的 H4 膜层的吸收现象得到了明显的改善,但 当沉积速率降低为 0.1 nm/s 时,得到的 H4 的折射 率偏低。经过多次试验,最后确定 H4 的沉积速率 为 0.3 nm/s,充氧量为 6 sccm(sccm:标况毫升每分 钟)时,膜层基本没有吸收且有较高的折射率。

沉积 SiO₂ 时发现工艺参数对其折射率的影响 很小,但当沉积速率过大时,SiO₂ 容易喷溅,而沉积 速率太小镀膜时间又太长。综上所述以及考虑到设 备的稳定性,最后得到的工艺参数如表4 所示。

表 4 最终的工艺参数

Cal	ole 4	4 Final	techno	logical	l parameters
-----	-------	---------	--------	---------	--------------

	Deposition rate /(nm/s)	Substrate temperature / ${\rm \mathring{C}}$	Vacuum /Pa	Flow rate of $O_2/sccm$
H4	0.3	250	8×10^{-3}	6
SiO_2	0.2	- 230 -	3×10^{-3}	4

4.2 材料折射率的计算

为了使理论光谱曲线与实际的光谱曲线更好地 吻合,需要进一步得到沉积材料的折射率。在上述 工艺条件下,在厚度为 2 mm 的 K9 基底上沉积一 定厚度的 H4 和 SiO₂,分别测试其透射率曲线。将 K9 基片的光谱透射率曲线和镀膜后的透射率曲线

图 1 H4 的色散曲线 Fig. 1 Dispersive curve of H4

导入 Macleod 膜系设计软件,并选择测试波长范围 内的透射率曲线的峰谷值点,得到的 H4 和 SiO₂ 的 色散曲线分别如图 1 和图 2 所示。

5 膜系设计

根据具体参数要求,膜系设计时主要考虑以下 问题:1)为了确保某一膜系可在具体的设备上完成, 需考虑该设备的监控精度;2)考虑到沉积速率的稳 定性和膜层的总厚度,还需考虑晶控片的使用寿命。

针对设计要求,采用带通滤光片的膜系作为初始 膜系,具体形式为 Sub|HLH 2L HLH L HLHLH 2L HLHLH L HLH 2L HLH | A,参考波长为 808 nm。 其中 Sub 为 K9 基底,A 为入射介质空气,H 和 L 分 别代表 $\lambda/4$ 光学厚度的 H4 和 SiO₂。利用 TFCalc 膜 系设计软件得到的理论曲线如图 3 所示,由图可知 长波反射带宽和短波反射带宽远不能满足设计要 求。因此需要对反射带进行展宽。

为了减小展宽后对 808 nm 峰值透射率的影 响,选择不同中心波长的短波通、长波通膜系分别对 长波反射带和短波反射带进行展宽,但无论是长波 通还是短波通,透射带中都有不同程度的波纹,原因 是多层膜在透射带的等效折射率与入射介质或基底 的匹配性差。针对这一原因,利用等效折射率的概 念在基础膜系两侧加对称膜系匹配层来使多层膜的 等效折射率与入射介质和基底达到匹配^[11]。最终 的理论曲线如图 4 所示,膜层总厚度约为16 μm。 但实验过程中发现,单个晶控片的监控厚度约为 5 μm时就已经失效。所以总厚度为 16 μm 的膜系 监控利用双晶控探头的设备是很难实现的。开始的

图 3 带通滤光片的理论曲线 Fig. 3 Theoretical curve of bandpass filter

为了解决膜厚控制问题又不使膜层和镀膜材料 受到污染,选择在基底的一个面上只对短波反射带 进行展宽,在基底的另一个面对长波反射带进行展 宽。在短波反射带展宽的过程中,为了保证带通滤 光片膜系的对称性又尽可能提高 808 nm 的峰值透 射率,选择对长波通膜系进行优化,得到的理论曲线 如图 5 所示,膜层的总厚度约为 7 μm。对另一面的 短波通膜系进行全部优化,得到到的理论曲线如图 6 所示,膜层总厚度约为 9 μm。将图 5 和图 6 的膜 系导入 TFCalc 软件中的 layerfront 和 layerback 中,得总的理论曲线如图 7 所示。比较图 4 和图 7 可知,采用双面镀膜的方法,既增加了 808 nm 峰值 透射率又可以解决膜层的厚度控制问题。

40 20 0 600 800 1000 1200 1400 1600 Wavelength /nm

6 薄膜制备

薄膜制备工作是在国产 900 型双枪真空镀膜机 上完成的,设备配有考夫曼离子源、双探头的 IC/5 石英晶体膜厚控制仪和 OMS 光控装置。

考虑到基底表面对激光损伤阈值的影响,镀膜 前用 PGI-1240 型轮廓仪对其表面进行测试并抛光, 可获得均方根表面粗糙度不大于 0.5 nm 的光滑表 面。抛光后的基片首先用丙酮清洗,然后用体积比为1:1的无水乙醇和无水乙醚混合液擦拭。然后放入真空室,利用优化后的沉积工艺进行薄膜制备。制备的过程中,首先利用实验片对一个面的膜系进行镀制,当调整为最佳结果时,放入正式件进行镀制,利用同样的方式镀制正式件的另一面。镀制过程中,非周期膜系采用晶控的方法来控制膜层的物理厚度,而带通滤光片的周期膜系采用光控的方法来监控,而且光控利用的是透射光监控。

7 测试结果与分析

7.1 光谱特性的测试

用岛津分光光度计 UV-3150 进行测试。在实验件上单面镀制展宽了短波反射带的带通滤光膜的测试结果如图 8 所示,实验件单面镀制短波通滤光膜的测试结果如图 9 所示。

从图 8(a)可以看出 808 nm 波长附近透射率很低。利用 Macloed 软件进行模拟分析,发现低透射率主要是由 H4 和 SiO₂ 的光控 Tooling 不准和折射率的非均匀性造成的。进一步修正 H4 和 SiO₂ 的 光控 Tooling 值,并将装有 H4 的坩埚数目由 4 个 增加到 8 个,以减小蒸发角度的影响。继续实验的 测试曲线如图 8(b)所示。

从图 9 的短波通滤光片曲线可以看出,在 800 nm 附近有一很大的次峰,且 1064 nm 和 1550 nm 波长处的反射率还相对较低。同样利用 Macloed 软件进行模拟分析,得知次峰主要是由 H4 和 SiO₂ 沉积过程中的累积误差造成的,1064 nm 和 1550 nm 波长处的反射率较高是由 H4 和 SiO₂ 的晶控 Tooling 引起的,进一步改变挡板的开关速度以及修正 H4 和 SiO₂ 的晶控 Tooling 值。实验后的测试曲线如 图 9(b)所示。

图 8 展宽了短波反射带的带通滤光片的实测透射率曲线

Fig. 8 Measured transmittance curve of bandpass filter that the short wavelength reflection band has been broadened

Fig. 9 Measured transmittance curve of short wavelength pass filter

从图 8(b)和图 9(b)可以看出 808 nm 附近的透射率有很大程度的提高,800 nm 附近的次峰也基本消除。虽然图 9(b)中在 795 nm 附近仍有小的次峰,但不影响 808 nm 的透射率。在正式件上利用 图 8(b)和图 9(b)的工艺得到的双面镀膜后的透射率曲线如图 10 所示。由图 5 和图 8(b)、图 6 和

图 9(b)以及图 7 和图 10 可以看出,对于理论曲线 和实际曲线,无论是透射率还是半峰全宽(FWHM) 都有一定的区别,表 5 给出了具体的数据对比。

引起透射率、半峰全宽的理论值和实际值差别 的主要原因有:1)膜层厚度的累计误差,这不仅能引 起通带透射率的变化,同时可以造成半峰全宽的改 变。带来膜层厚度误差的因素主要有显示的膜层厚 度与实际的膜层厚度的偏差(这是间接控制膜厚过 程中难以避免的)以及光电极值法本身的缺陷(由于 周期膜系的膜层厚度是用光电极值法控制的,而光 电极值法的缺点是在极值点不能明显地反映出膜层 厚度的变化,因此在人为判断极值的时候势必会引 入一定的厚度误差);2) 拟合的膜层材料折射率与实 际膜层材料折射率的差别,这不仅影响通带透射率 而且影响半峰宽度;3)分光光度计的测试误差;4)膜 层的弱吸收及散射。

图 10 双面镀膜的实测透射率曲线

Fig. 10 Measured transmittance curve of substrate

coated on both sides

表5 理论曲线和实测曲线的对比

Tab	le 5	Comparison	of	theoretical	curve and	measured	curve
-----	------	------------	----	-------------	-----------	----------	-------

	Theoretical transmittance at 808 nm /%	Measured transmittance at 808 nm /%	Theoretical FWHM /nm	Measured FWHM /nm
Bandpass filter that the short wavelength reflection band has been broadened	95.8	93.3	29	35
Short wavelength pass filter	95.8	93.4	68	70
Filter coated on both sides	99.9	95.1	32	41

而双面镀膜后的滤光片的理论值与实际值的差 别,不仅是上述因素共同作用的结果,同时受到设备 的重复性的影响,所谓重复性是在同一设备同一工 艺条件下,不同批次镀制的滤光片的光学特性也会 有区别。

7.2 激光损伤阈值的测试

损伤阈值的测量采用 1-on-1 方式,即激光只照 射到光学元件表面没有被激光辐照过的地方。激光 器选用 Nd: YAG 激光器, 波长为 1064 nm, 脉冲宽 度为 10 ns,频率为 10 Hz,倍频后获得 532 nm 的激 光。对其中一个面进行多次测量,比较典型的激光 损伤概率结果如图 11 和图 12 所示。利用最小二乘 法做直线拟合,可得到零激光损伤概率的激光损伤

图 11 1064 nm 激光损伤概率

阈值。由于损伤阈值的测试具有一定的不确定性, 表 6 给出了不同基片上的三组拟合结果。这样得到 的平均值会更接近真实值。

图 12 532nm 激光损伤概率

表 6 具体的激光损伤阈值 Т

Wavelength of	LIDT of samples /	Average /
laser /nm	(J/cm^2)	(J/cm^2)
	6.2	
532	6.6	6.07
	5.4	
1064	13.8	13.87
	14.9	
	12.9	

从表 6 可以看出,随着波长的减小,激光损伤阈 值在降低,原因是消光系数随波长减小而增大,从而 导致膜层表面缺陷在短波长作用下会比长波长作用 下吸收更多的光子能量而转化成热破坏的能量,使 膜层更易于遭受破坏^[12]。利用同样的方法对镀制 短波通的面进行测试,激光损伤阈值没有明显的区 别,基本满足使用要求。

7.3 附着性测试

用 2 cm 宽剥离强度不小于 2.94 N/cm² 的胶 带纸粘牢在膜层表面,把胶带纸从零件的边缘朝表 面的垂直方向迅速拉起后,膜层无脱落、无损伤。

7.4 高低温测试

将样品放入低温箱,由室温降到一50℃,保持 2h;将样品放入高温箱,由室温升到70℃,保持 2h。两种情况下膜层均无明显变化。

7.5 盐雾测试

将无包装的裸片放在温度为 35 ℃±2 ℃的盐 雾箱内,盐溶液质量分数为 4.9% ~ 5.1%、 pH6.5~7.2,持续喷雾 24 h,膜层无明显变化。

8 结 论

选择新型混合材料 H4 和 SiO₂ 作为高低折射 率材料,通过正交矩阵实验对工艺参数进行优化和 改进,利用 Macleod 和 TFCalc 软件进行设计和分 析,并选择双面镀膜的方法对带通滤光片的长波反 射带和短波反射带进行展宽,解决了单面膜层过厚 难以监控的问题。采用电子束真空镀膜的方法并加 以离子辅助沉积技术,制备出了具有较高激光损伤 阈值的激光滤光膜。该薄膜基本满足使用要求,但 带通滤光片的峰值透射率还达不到理论的设计要 求,同时对大功率的激光武器,激光损伤阈值仍相对 较低,所以如何进一步提高带通滤光片的峰值透射 率和提高激光损伤阈值是今后研究的重点。

参考文献

 Shi Peng, Fu Xiuhua, Sun Yan *et al.*. Design and fabrication of double wavelength laser protective infrared antireflection coatings [J]. *Chinese J. Lasers*, 2011, **38**(4): 0407003 石 彭, 付秀华, 孙 岩等. 双波段激光防护红外减反膜的研制 [J]. 中国激光, 2011, **38**(4): 0407003

- 2 Min Zhang, Peida Ye, Fan Zhang. NOLM-based wavelength conversion with FBG band-pass filter for optical packet switching [J]. Chin. Opt. Lett., 2003, 1(1): 3~5
- 3 He Caimei, Fu Xiuhua, Sun Yulin et al.. Study and fabrication of multi-band laser filter film[J]. Chinese J. Lasers, 2009, 36(6): 1550~1554

贺才美, 付秀华, 孙钰林 等. 多波段激光滤光膜的研制[J]. 中 国激光, 2009, **36**(6): 1550~1554

- 4 Shen Lin, Xiong Shengming, Liu Hongxiang. Preparation of narrow-band pass filter by dual-ion beams sputtering deposition [J]. Optical Instruments, 2004, 26(2): 87~90
- 申 林,熊胜明,刘洪祥. 双离子束溅射技术制备带通滤光片 [J]. 光学仪器, 2004, **26**(2): 87~90
- 5 Geng Siyu, Fu Xiuhua, Tan zhi. Design and manufacture of dayand-night double sensitive infrared filter film [J]. Acta Optica Sinica, 2010, **30**(3): 903~906

耿似玉,付秀华,谭 志.双通感红外日夜两用型滤光膜的研制 [J].光学学报,2010,30(3):903~906

- 6 Jianke Yao, Weiqiang Zeng, Zhengxiu Fan et al.. Laser-induced damage of high reflectors for Ti:sapphire laser system[J]. Chin. Opt. Lett., 2007, 5(12): 724~726
- 7 Huang Changgang, He Zhibing, Wang Chaoyang et al.. Progress in laser reflective film with high damage threshold[J]. Materials Review, 2006, 20(6): 309~341 黄常刚,何智兵,王朝阳等.反应磁控溅射制备高阈值激光反射 膜的研究进展[J]. 材料导报, 2006, 20(6): 309~341
- 8 Huang Qiang, Wang Lixi, Zhang Qitu. Design of double wavelength reflective multi-layer [J]. Optical Technique, 2007, 33 (Suppl.): 147~151

黄 强,王丽熙,张其土.双波段激光防护多层反射膜的设计 [J].光学技术,2007,**33**(增刊):147~151

- 9 Zhong Disheng. Vacuum Coating [M]. Shenyang: Liaoning University Press, 2001. 181~191, 278~288
 钟迪生. 真空镀膜 [M]. 沈阳: 辽宁大学出版社, 2001. 181~191, 278~288
- 10 Liu Chunling, Wang Chunwu, Wang Guangde *et al.*. Process investigation of H4 thin film prepared by electron beam evaporation and application on laser diodes cavity coatings[J]. *Chinese J. Lasers*, 2010, **37**(12): 3141~3144 刘春玲, 王春武, 王广德等. 电子束蒸镀 H4 膜工艺及其在 808

nm 激光器腔面膜上的应用[J]. 中国激光, 2010, **37**(12): 3141~3144

- 11 Tang Jinfa, Gu Peifu, Liu Xu *et al.*. Modern Optical Thin Film Technology [M]. Hangzhou: Zhejiang University Press, 2006. 43~48, 338~343
 唐晋发,顾培夫,刘 旭等. 现代光学薄膜技术[M]. 杭州:浙江 大学出版社, 2006. 43~48, 338~343
- 12 Zhou Ming, Zhao Yuanan, Li Dawei *et al.*. Laser damage of optical film with the combined irradiation of 1064 nm and 532 nm pulse[J]. *Chinese J. Lasers*, 2009, 36(11): 3050~3054 周 明,赵元安,李大伟等. 1064 nm 和 532 nm 激光共同辐照 薄膜的损伤[J]. 中国激光, 2009, 36(11): 3050~3054

栏目编辑:韩 峰